中文      English
 
 
世界軌道交通資訊網(wǎng)

我國(guó)地下工程施工新技術(shù)綜述

2007-04-17 來(lái)源:中國(guó)城市軌道交通網(wǎng) 作者:佚名 瀏覽次數(shù):
本文摘要:藏鐵路的開(kāi)工建設(shè)和順利實(shí)施,為解決高原凍土區(qū)地下工程的施工提供了良好的試驗(yàn)基礎(chǔ);同時(shí),城市地鐵工程的建設(shè)也對(duì)解決復(fù)雜城市地質(zhì)環(huán)境條件下地下工程施工提出了新的挑戰(zhàn);而大型橋梁、

[摘要]總結(jié)了近年來(lái)我國(guó)一批大型基礎(chǔ)設(shè)施建設(shè)工程,如青藏鐵路、深圳地鐵、上??缃淼赖鹊叵鹿こ淌┕ぶ兴捎玫男鹿に嚭托录夹g(shù)。
[關(guān)鍵詞]地下工程;凍土;水下工程;隧道;施工技術(shù)
 
      青藏鐵路的開(kāi)工建設(shè)和順利實(shí)施,為解決高原凍土區(qū)地下工程的施工提供了良好的試驗(yàn)基礎(chǔ);同時(shí),城市地鐵工程的建設(shè)也對(duì)解決復(fù)雜城市地質(zhì)環(huán)境條件下地下工程施工提出了新的挑戰(zhàn);而大型橋梁、跨江隧道和海上設(shè)施的建設(shè)使水下的地下工程施工面臨更高的技術(shù)要求。一系列大型基礎(chǔ)設(shè)施的建設(shè)并完工極大地促進(jìn)了地下工程施工技術(shù)水平,及時(shí)總結(jié)和完善這些地下工程施工新工藝和其他技術(shù)成果將為今后的地下工程施工提供良好的技術(shù)支持和保證,對(duì)推動(dòng)我國(guó)地下工程的施工帶來(lái)巨大的促進(jìn)作用。本文結(jié)合近年來(lái)我國(guó)一些大型基礎(chǔ)設(shè)施建設(shè)工程,如青藏鐵路、深圳地鐵、上??缃淼赖仁┕み^(guò)程中取得的地下工程施工技術(shù)成果,對(duì)新工藝進(jìn)行介紹,以便為今后類(lèi)似工程的施工提供借鑒。
1凍土區(qū)地下工程施工新工藝
      青藏鐵路格爾木至拉薩段全長(zhǎng)1100多km,穿越世界海拔最高、有世界屋脊之稱(chēng)、施工條件惡劣的青藏高原。在高海拔多年凍土區(qū)修建鐵路在世界上也是第1次,無(wú)成熟的施工經(jīng)驗(yàn),技術(shù)含量高。
1.1 多年凍土區(qū)鉆孔灌注樁施工工藝
      其關(guān)鍵工藝是減少施工過(guò)程產(chǎn)生的各種熱量,如鉆孔的摩擦熱、回填料的熱量、灌注樁混凝土的水化熱等,避免樁周地基土溫度場(chǎng)急劇變化,引起樁周地基土一定范圍升溫和融化。同時(shí)由于凍土區(qū)有季節(jié)的變化,表層的季節(jié)融化層隨季節(jié)的變化將產(chǎn)生凍脹力,消除這些凍脹力也是鉆孔灌注樁的一個(gè)重點(diǎn)。
      為減少施工熱量對(duì)凍土區(qū)的影響,盡快形成新的熱平衡狀態(tài),多年凍土區(qū)鉆孔灌注樁樁身混凝土澆筑后,須經(jīng)過(guò)一個(gè)階段的熱交換過(guò)程后方可進(jìn)行承臺(tái)以上部分施工,一般熱交換的時(shí)間為60d,60d后方可認(rèn)為樁基已基本穩(wěn)定。
      樁基在使用過(guò)程中由于凍土季節(jié)的變化將產(chǎn)生凍脹力。根據(jù)凍脹力作用于基礎(chǔ)表面的部位和方向,可劃分為3種:切向凍脹力、水平凍脹力和法向凍脹力(見(jiàn)圖1)。水平凍脹力相互抵消,對(duì)工程造成破壞的主要是凍脹產(chǎn)生的切向力和法向力。在工程建設(shè)中,采取以下措施可以防止樁基礎(chǔ)凍脹:①為避免樁基礎(chǔ)受到法向凍脹力,將樁基礎(chǔ)嵌入多年凍土天然上限以下一定深度;②將鋼制擴(kuò)筒埋入多年凍土上限以下至少0.5m,護(hù)筒內(nèi)徑比樁徑大10cm,并于護(hù)筒外圍涂渣油,成樁后不拆除護(hù)筒,減少外表面的親水程度;③盡量采用高樁承臺(tái),凍脹嚴(yán)重地區(qū)采用鉆孔擴(kuò)底樁;④在護(hù)筒外側(cè)、低樁承臺(tái)底部采用渣油拌制粗顆粒土回填。以上措施能有效地減小切向凍脹力,降低凍土對(duì)護(hù)筒的上拔凍脹力(見(jiàn)圖2);⑤鉆孔采用旋挖鉆機(jī)干法成孔保證孔位置正確和鉆孔的垂直度;⑥采用低溫早強(qiáng)耐久混凝土,避免了混凝土低溫澆筑帶來(lái)的強(qiáng)度增長(zhǎng)慢的問(wèn)題。

1.2 多年凍土隧道施工工藝
      高原多年凍土隧道工程施工可借鑒的經(jīng)驗(yàn)較少,其核心在于盡量減少氣溫升高對(duì)凍土的影響,避免凍土融化壓縮下沉和凍脹力造成施工災(zāi)害和運(yùn)營(yíng)隱患。
      凍土的抗壓強(qiáng)度很高,其極限抗壓強(qiáng)度甚至與混凝土相當(dāng)。凍土融化后的抗壓強(qiáng)度急劇降低,所形成的熱融沉陷和下一個(gè)寒季的凍脹作用常常造成工程建筑物失穩(wěn)而難以修復(fù)。
      含水的松散巖石和土體,溫度降低到0℃時(shí),伴隨有冰體的產(chǎn)生,這是凍結(jié)狀態(tài)的主要標(biāo)志。水結(jié)成冰時(shí),體積增加約9%,使土體發(fā)生凍脹。土凍結(jié)時(shí)不僅原位置的水凍結(jié)成冰,而且在滲透力(抽吸力)作用下,水分將從未凍區(qū)向凍結(jié)鋒面轉(zhuǎn)移并在那里凍結(jié)成冰,使土的凍脹更加強(qiáng)烈。
      土在凍結(jié)過(guò)程中由于水變冰體積增大,并引起水分遷移、析冰、凍脹、土骨架位移,因而改變土的結(jié)構(gòu)。在融化過(guò)程則必然伴隨著土顆粒的位移,充填冰融化排出的空間,產(chǎn)生融化固結(jié),從而引起局部地面的向下運(yùn)動(dòng),即熱融沉陷(熱融下沉)。
      為避免隧道施工中熱融沉陷,凍土隧道施工的關(guān)鍵工藝是作好保溫措施。
      隧道保溫施工工藝主要包括:優(yōu)選寒季施工明洞及洞口工程,開(kāi)挖施工時(shí)增設(shè)遮陽(yáng)保溫棚,阻隔太陽(yáng)輻射能量對(duì)凍土的影響。正洞采用弱爆破及光面爆破技術(shù)減少對(duì)凍土的擾動(dòng)和超欠挖,開(kāi)挖后清除拱(墻)夾層散碎冰塊,迅速?lài)娀炷练忾]巖面;采用有軌運(yùn)輸減少洞內(nèi)廢氣污染,減少通風(fēng)次數(shù)和風(fēng)量;暖季采用夜間放炮通風(fēng)和冷風(fēng)機(jī)通風(fēng)等措施將洞內(nèi)掌子面溫度控制在5℃以下,盡量縮小洞室開(kāi)挖斷面外的凍土融化圈。隧道全長(zhǎng)全斷面鋪設(shè)“防水層+保溫板+防水層”,阻隔隧道竣工后洞內(nèi)溫度變化對(duì)凍土的擾動(dòng),確保運(yùn)營(yíng)安全。
      影響土體凍脹的主要因素是土體類(lèi)型、含水狀況和凍結(jié)條件。凍土學(xué)家經(jīng)過(guò)長(zhǎng)期的試驗(yàn)證明:粗顆粒土凍脹小甚至不凍脹,而細(xì)顆粒土一般凍脹較大。土體含水量大則凍脹嚴(yán)重,當(dāng)土體含水量小于某一值時(shí),土的凍脹率為零。為防止凍脹對(duì)明洞及洞口工程結(jié)構(gòu)的影響,將明洞及洞口仰坡周邊凍脹影響范圍內(nèi)的富冰凍土、飽冰凍土和含土冰層挖除,用粗顆粒土換填,嚴(yán)格控制粗顆粒土的含水量,換填后作好防排水設(shè)施。
      工程實(shí)例:青藏鐵路風(fēng)火山多年凍土隧道全長(zhǎng)1338m,是世界上海拔最高的凍土隧道,多年凍土上限1~1.8m,凍土層厚達(dá)100~150m。洞身全部位于凍土之中。在施工過(guò)程中充分把握凍土的工程性質(zhì),采用注漿管棚、注漿錨桿、洞內(nèi)光面爆破等開(kāi)挖技術(shù)并綜合運(yùn)用粗顆粒土換填明洞覆蓋層,全長(zhǎng)、全斷面設(shè)置多重保溫層,以及保溫、控溫、供氧、噴射混凝土、信息監(jiān)控等多項(xiàng)技術(shù),盡量縮小凍土融化圈,使凍土隧道重建新的熱量平衡系統(tǒng),滿(mǎn)足了安全、優(yōu)質(zhì)、高效的建設(shè)要求。
      此外凍土區(qū)防溫措施還有傾填片石通風(fēng)路基施工工藝,高溫細(xì)粒土鋪設(shè)保溫板路基施工技術(shù),高溫細(xì)粒土熱棒路基施工技術(shù)等,這些措施都可以大大減少路基承載后對(duì)凍土的熱融影響。
2 地鐵和過(guò)江隧道施工新工藝
      隨著我國(guó)城市化快速發(fā)展,大城市的交通壓力日益增大,大規(guī)模的城市地鐵建設(shè)勢(shì)成必然。對(duì)于沿江規(guī)劃的城市過(guò)江隧道的建設(shè)也越來(lái)越多。這類(lèi)工程建設(shè)往往規(guī)模大,施工環(huán)境惡劣,施工技術(shù)復(fù)雜,下面簡(jiǎn)單介紹幾種施工新工藝。
2.1 地鐵施工中的樁基托換技術(shù)
      地鐵建設(shè)中不可避免遇到樁基托換工程。深圳地鐵百貨廣場(chǎng)大軸力樁基托換技術(shù)研究,解決了大軸力樁基托換的主要關(guān)鍵技術(shù)問(wèn)題,豐富了樁基托換工程的施工工藝。
      樁基托換形式是我國(guó)托換技術(shù)應(yīng)用的常見(jiàn)形式。樁基托換的核心技術(shù)在于新樁和舊樁荷載的轉(zhuǎn)換,要求在轉(zhuǎn)換過(guò)程中托換結(jié)構(gòu)和新樁的變形限制在上部結(jié)構(gòu)允許范圍內(nèi)。針對(duì)上述變形的控制,托換的機(jī)制可分為主動(dòng)和被動(dòng)托換。主動(dòng)托換主要是在舊樁截樁之前,對(duì)新樁和托換結(jié)構(gòu)加載,消除部分新樁和托換結(jié)構(gòu)的變形,使得托換后樁和結(jié)構(gòu)的變形限制在允許范圍內(nèi)。該技術(shù)應(yīng)用于大軸力、結(jié)構(gòu)物對(duì)變形要求嚴(yán)的情況。被動(dòng)托換是在舊樁切除過(guò)程中,將荷載傳遞到新樁,托換后的樁和結(jié)構(gòu)變形難以控制,該技術(shù)適用于小噸位和對(duì)結(jié)構(gòu)變形控制不嚴(yán)的情況。深圳地鐵國(guó)貿(mào) 老街區(qū)間百貨廣場(chǎng)大廈樁基托換工程具有托換樁多(6根)、軸力大(18000kN)、樁徑大(2000mm)、地質(zhì)條件差、地下水頭高、托換位置深(地下2層)、使用環(huán)境復(fù)雜(中間穿越地鐵,振動(dòng)影響)等特點(diǎn),目前國(guó)內(nèi)外尚無(wú)類(lèi)似大軸力托換施工經(jīng)驗(yàn)(國(guó)外日本類(lèi)似托換最大軸力8750kN,國(guó)內(nèi)5900kN)可借鑒。
      深圳地鐵一期工程線(xiàn)路由于受走向及最小半徑(Rmin=300m)等條件限制,必須從百貨廣場(chǎng)大廈裙樓下穿越。由此產(chǎn)生樁基礎(chǔ)托換問(wèn)題。百貨廣場(chǎng)主樓22層,裙樓9層,地下室3層,為框梁 剪力墻結(jié)構(gòu),基礎(chǔ)為獨(dú)立樁基端承樁。樁端持力層(強(qiáng)風(fēng)化層)承載力標(biāo)準(zhǔn)值2700kPa,樁身直徑最大2000mm的人工挖孔樁(C25),根據(jù)樓層估算托換樁最大設(shè)計(jì)軸力約18900kN。
      區(qū)間隧道通過(guò)百貨廣場(chǎng)、深南東路、華中酒店,由于暗挖隧道位置及其上部建筑物的影響,部分樁在隧道內(nèi)或緊靠隧道,須托換百貨廣場(chǎng)9層裙樓樁6根(樁徑2000mm,樁基持力層均在隧道結(jié)構(gòu)面以下基巖),最大軸力18000kN。
      根據(jù)百貨廣場(chǎng)的結(jié)構(gòu)、基礎(chǔ)形式及操作空間,百貨廣場(chǎng)樁基托換采用梁式托換結(jié)構(gòu)柱的形式,托換新樁采用人工挖孔樁,整個(gè)托換工程在地下3層室內(nèi)進(jìn)行。
      根據(jù)高層結(jié)構(gòu)變形要求,裙樓樁基采用主動(dòng)托換。托換時(shí),在托換梁和新樁之間設(shè)置加載千斤頂,利用千斤頂加載,使上部結(jié)構(gòu)有微量頂升位移,同時(shí)使新樁的大部分沉降位移在頂升時(shí)預(yù)壓完成,從而通過(guò)主動(dòng)加載實(shí)現(xiàn)作用在原結(jié)構(gòu)樁上的荷載經(jīng)托換大梁轉(zhuǎn)移至新樁上,且原樁(柱)頂升值和新樁沉降也得到有效控制。截樁在開(kāi)鑿人工孔至托換梁底下后逐步進(jìn)行。截樁后隧道暗挖、襯砌變形穩(wěn)定后(期間千斤頂裝置及時(shí)調(diào)整),托換梁與新樁連接形成永久結(jié)構(gòu),托換完成。樁基托換及隧道施工全過(guò)程都實(shí)行嚴(yán)格的全過(guò)程監(jiān)控、量測(cè),確保了結(jié)構(gòu)安全。
      通過(guò)嚴(yán)格的計(jì)算和施工操作,通過(guò)技術(shù)攻關(guān),解決了軟弱地層樁基開(kāi)挖支護(hù)、托換梁以及截樁、力的轉(zhuǎn)換等技術(shù)難題,保證了百貨廣場(chǎng)等高層建筑物、地下管線(xiàn)的安全和正常使用。
      該工程樁基托換原理如圖3所示。

2.2 過(guò)江隧道施工中的水平凍結(jié)法
      地下隧道之間的連接通道凍結(jié)法施工是利用人工制冷技術(shù),使地層中的水變冰,把天然土變成凍土,增加其強(qiáng)度和穩(wěn)定性,隔絕地下水與地下結(jié)構(gòu)的聯(lián)系,以便在凍結(jié)壁的保護(hù)下進(jìn)行聯(lián)絡(luò)通道施工的一種特殊施工方法。
      制冷技術(shù)是用氟里昂作制冷劑的三大循環(huán)系統(tǒng)完成的。三大循環(huán)系統(tǒng)分別為氟里昂循環(huán)系統(tǒng)、鹽水循環(huán)系統(tǒng)和冷卻水循環(huán)系統(tǒng)。制冷三大循環(huán)系統(tǒng)構(gòu)成熱泵,將地?zé)嵬ㄟ^(guò)凍結(jié)孔由低溫鹽水傳給氟里昂循環(huán)系統(tǒng),再由氟里昂循環(huán)系統(tǒng)傳給冷卻水循環(huán)系統(tǒng),最后由冷卻水循環(huán)系統(tǒng)排入大氣。隨著低溫鹽水在地層中的不斷流動(dòng),地層中的水逐漸結(jié)冰,形成以?xún)鼋Y(jié)管為中心的凍土圓柱,凍土圓柱不斷擴(kuò)展,最后相鄰的凍結(jié)圓柱連為一體并形成具有一定厚度和強(qiáng)度的凍土墻或凍土帷幕。水平凍結(jié)加固原理如圖4所示。

      在實(shí)際施工中,通過(guò)水平鉆進(jìn)凍結(jié)孔,設(shè)置冷凍管,并利用鹽水為熱傳導(dǎo)媒介進(jìn)行凍結(jié)。一般是在工地現(xiàn)場(chǎng)內(nèi)設(shè)置凍結(jié)設(shè)備,冷卻不凍液(一般為鹽水)至-22~-32℃。其主要特點(diǎn)有:
      (1)可有效隔絕地下水,對(duì)于含水量>10%的含水、松散、不穩(wěn)定地層均可采用凍結(jié)法施工。
      (2)凍土帷幕的形狀和強(qiáng)度可視施工現(xiàn)場(chǎng)條件、地質(zhì)條件靈活布置和調(diào)整,凍土強(qiáng)度可達(dá)4~10MPa,能有效提高工效。
      (3)凍結(jié)法施工對(duì)周?chē)h(huán)境無(wú)污染,無(wú)異物進(jìn)入土壤,噪聲小。
      (4)影響凍土強(qiáng)度的因素多,凍土屬于流變體,其強(qiáng)度既與凍土的成因有關(guān),也與受力的特征有關(guān),影響凍土的主要因素有凍結(jié)溫度、土體含水率、土的顆粒組成、荷載作用時(shí)間和凍結(jié)速度等。
      凍結(jié)法的關(guān)鍵施工技術(shù)包括:
      (1)確定凍結(jié)主要技術(shù)指標(biāo),即根據(jù)實(shí)際工況,確定積極凍結(jié)期和維護(hù)凍結(jié)期的鹽水溫度、凍土墻平均溫度和凍土強(qiáng)度。
      (2)凍結(jié)孔布置和施工,即根據(jù)連接通道平面尺寸和結(jié)構(gòu)受力特征,設(shè)計(jì)布置凍結(jié)孔,同時(shí)凍結(jié)孔布置應(yīng)根據(jù)管片配筋圖微調(diào)凍結(jié)孔偏斜,控制孔徑向外的偏角在0.5°~1 0°范圍。
      (3)凍結(jié)站設(shè)計(jì)、積極凍結(jié)和維護(hù)凍結(jié)施工,計(jì)算凍結(jié)冷量,根據(jù)冷量需要選擇冷凍機(jī)組。
      (4)連接通道開(kāi)挖與構(gòu)筑施工方法及其順序。
      (5)施工監(jiān)測(cè)監(jiān)控。
      上海市大連路越江隧道工程由東、西2條隧道組成,2條隧道之間設(shè)有連接通道,均位于黃浦江底下,相距約400m。位于浦西岸邊的連接通道(一),東西線(xiàn)隧道中心間距35.705m,隧道間高差3.565m,連接通道凈距約25.665m;位于浦東岸邊的連接通道(二),東西線(xiàn)隧道中心間距27.575m,隧道間高差0.345m,連接通道凈距為17.175m。2條連接通道所處地層為砂質(zhì)粉土和粘質(zhì)粉土,滲透系數(shù)大、承壓水頭高,為滿(mǎn)足通道的施工安全采用凍結(jié)法施工。工程實(shí)踐表明,連接通道凍結(jié)施工技術(shù)具有凍結(jié)速度快、凍土強(qiáng)度高、帷幕均勻性好、抗?jié)B漏性能高、與隧道管片結(jié)合嚴(yán)密、施工安全可靠的優(yōu)點(diǎn)。對(duì)于長(zhǎng)距離、大深度、高承壓水條件下的江底連接通道的施工,其安全可靠性較能保證。融沉作為凍結(jié)法施工中不可避免的情況,可通過(guò)隧道及連接通道預(yù)留的注漿孔,及時(shí)地對(duì)地層進(jìn)行補(bǔ)償注漿,減小融沉量。在數(shù)條連接通道的施工中,已經(jīng)充分顯示出其優(yōu)越性和社會(huì)經(jīng)濟(jì)價(jià)值。
2.3 地鐵車(chē)站三拱兩柱結(jié)構(gòu)暗挖中洞施工工藝
      隨著我國(guó)城市地鐵和交通快速軌道的發(fā)展,修建地鐵的大城市也越來(lái)越多。由于地鐵所經(jīng)過(guò)的地段大部分為繁華的商業(yè)區(qū),有些地段受拆改費(fèi)用、交通占道、地下管線(xiàn)保護(hù)、古文物保護(hù)、環(huán)境保護(hù)等方面的影響,明挖(蓋挖)地鐵車(chē)站受到限制,只能采用暗挖法施工,從而出現(xiàn)了暗挖地鐵車(chē)站。
      北京地鐵五號(hào)線(xiàn)磁器口車(chē)站、天壇東門(mén)站、崇文門(mén)站工程,采用三拱兩柱暗挖車(chē)站中洞法綜合配套施工技術(shù),保證了工程質(zhì)量和安全,按期完成了施工任務(wù),取得了良好的社會(huì)效益。該技術(shù)適用于圍巖自穩(wěn)能力較差的地鐵大跨雙層暗挖車(chē)站及多連拱等地下停車(chē)場(chǎng)、地下商場(chǎng)、大跨公路、鐵路隧道的施工。
      暗挖車(chē)站中洞法施工的技術(shù)特點(diǎn):
      (1)采用CRD(CrossDiaphragm)施工方法完成中洞開(kāi)挖,形成安全中洞初期支護(hù)體系。
      (2)在中洞內(nèi)完成底板、底梁、鋼管柱、中板、頂梁和中拱,形成穩(wěn)定中洞支撐體系,承受?chē)鷰r主要荷載,為邊洞開(kāi)挖提供安全條件。
      (3)采用CRD法對(duì)稱(chēng)完成邊洞開(kāi)挖。
      (4)拆除臨時(shí)初期支護(hù)體系,完成邊洞二襯施工。
      (5)體系轉(zhuǎn)換過(guò)程中,合理確定分段長(zhǎng)度,同時(shí)加設(shè)鋼支撐。
      (6)充分發(fā)揮監(jiān)控量測(cè)作用,信息化指導(dǎo)施工。
      暗挖車(chē)站中洞法施工的工藝原理:把大跨地質(zhì)較差的隧道分成三部分,各部分條塊分割,保證開(kāi)挖期間安全,先形成中洞初期臨時(shí)結(jié)構(gòu),在臨時(shí)結(jié)構(gòu)內(nèi)施做永久襯砌結(jié)構(gòu),形成中部穩(wěn)定支撐,承受?chē)鷰r主要荷載,然后對(duì)稱(chēng)開(kāi)挖邊洞部分的各分塊,最后形成整體結(jié)構(gòu)。體系轉(zhuǎn)換過(guò)程中,結(jié)合監(jiān)測(cè)情況加設(shè)鋼支撐。其工藝流程為:施工準(zhǔn)備→超前管棚→注漿加固→中洞各部開(kāi)挖→防水層鋪設(shè)→中洞底板、底梁→立柱→中洞中板→頂梁、中拱→超前管棚→注漿加固→邊洞各部開(kāi)挖→臨時(shí)隔壁拆除→防水層鋪設(shè)→邊洞底板→邊墻、中板→邊拱→二次襯砌背后注漿。地鐵車(chē)站三拱兩柱結(jié)構(gòu)暗挖中洞法施工如圖5所示。

      磁器口車(chē)站是北京地鐵5號(hào)線(xiàn)與規(guī)劃北京地鐵7號(hào)線(xiàn)的換乘站,車(chē)站全長(zhǎng)180m,寬21.87m,高14.933m。車(chē)站建筑面積為12244.2m2,車(chē)站主體覆土深度為9.8~10.3m。車(chē)站為雙層島式三拱兩柱結(jié)構(gòu),車(chē)站地下1層為站廳層,預(yù)留通道實(shí)現(xiàn)與七號(hào)線(xiàn)換乘,地下2層為站臺(tái)層。車(chē)站施工采用本法,保證了工程施工安全和質(zhì)量,獲得了成功。
3 水下基礎(chǔ)施工工藝
3.1 海上基礎(chǔ)工程施工
      隨著基礎(chǔ)設(shè)施的建設(shè),跨海大橋等海上工程逐漸增多,一批規(guī)劃和在建的大橋,如渤海灣跨海工程、長(zhǎng)江口跨江工程、杭州灣跨海工程(在建)、珠江口伶仃洋跨海工程以及瓊州海峽工程等對(duì)海上基礎(chǔ)施工帶來(lái)了新的挑戰(zhàn)。大型跨海、跨江工程基礎(chǔ)采用大直徑、長(zhǎng)基樁是必然的趨勢(shì),結(jié)構(gòu)鋼管樁、臨時(shí)鋼護(hù)筒及海上平臺(tái)臨時(shí)鋼管樁將大量采用。這些都對(duì)打樁船提出了新的要求。而配有高樁架,強(qiáng)大吊樁動(dòng)力系統(tǒng),大能量打樁錘及先進(jìn)的海上沉樁GPS測(cè)量定位系統(tǒng)的打樁船能出色的完成海上錘擊沉樁的任務(wù)。
      從大的方面來(lái)看,海上沉樁系統(tǒng)包括打樁船、運(yùn)樁船、拋錨艇、拖輪及交通船等船舶組合。單從鋼管樁的沉入工序來(lái)看,打樁船為鋼管樁沉入的主體,其主要由以下幾個(gè)部分組成:船體系統(tǒng)(包括船體、錨位系統(tǒng)、動(dòng)力系統(tǒng))、樁架及其吊樁系統(tǒng)、錘擊沉樁系統(tǒng)(包括打樁錘、替打)、海上沉樁GPS測(cè)量定位系統(tǒng)等。尤其是GPS能實(shí)現(xiàn)遠(yuǎn)離岸邊施工船的定位和定位過(guò)程中數(shù)據(jù)的自動(dòng)采集與處理,并以圖形和數(shù)字的形式反映施打樁的當(dāng)前和設(shè)計(jì)位置,便于操作人員調(diào)整船位進(jìn)行施工打樁,同時(shí)還能自動(dòng)生成打樁報(bào)表以及進(jìn)行數(shù)據(jù)的回放,從而給海上沉樁帶來(lái)便利。
      海上沉樁定位采用“海上沉樁GPS RTK測(cè)量定位系統(tǒng)”來(lái)實(shí)現(xiàn),如圖6所示。

      安裝在打樁船上的3個(gè)GPS接收機(jī)接收建立在陸地的基準(zhǔn)站及海中參考站發(fā)射的固定頻率數(shù)據(jù)鏈,以此作為定位的基準(zhǔn)數(shù)據(jù)。其工作原理:定位時(shí),由固定在打樁船上的GPS流動(dòng)站以RTK方式控制船體的位置、方向和姿態(tài),同時(shí)配合2臺(tái)固定在船上的免棱鏡測(cè)距儀測(cè)定樁身在一定標(biāo)高上的相對(duì)于船體樁架的位置,由此可推算出樁身在設(shè)計(jì)標(biāo)高上的實(shí)際位置,并顯示在系統(tǒng)計(jì)算機(jī)屏幕上。通過(guò)與設(shè)計(jì)坐標(biāo)比較,進(jìn)行移船糾位,直至偏位滿(mǎn)足要求。樁身的傾斜坡度由樁架控制。樁頂標(biāo)高根據(jù)由免棱鏡測(cè)距儀發(fā)出的紅色水平光束所指涂畫(huà)在樁身上的刻度,通過(guò)系統(tǒng)計(jì)算得出。具體定位前,將所要定位樁的設(shè)計(jì)中心坐標(biāo)、高程、平面扭角等參數(shù)輸入計(jì)算機(jī)內(nèi),定位時(shí),可在顯示屏上顯示實(shí)時(shí)樁位數(shù)據(jù)與圖形,同時(shí)也顯示設(shè)計(jì)沉樁位置和偏差,打樁船指揮人員根據(jù)顯示的有關(guān)信息指揮打樁船正確就位。
      本工藝適用于海洋、大江中的橋梁、碼頭的結(jié)構(gòu)鋼管樁、臨時(shí)鋼護(hù)筒及水中平臺(tái)臨時(shí)鋼管樁的沉入施工,有以下明顯的優(yōu)點(diǎn):①能在海況惡劣的海域中進(jìn)行作業(yè);②能夠適應(yīng)超長(zhǎng)、大直徑鋼管樁的沉樁施工;③能滿(mǎn)足不同傾斜度和平面偏角斜樁的沉樁施工;④能使鋼管樁穿過(guò)不同的土層;⑤測(cè)量定位簡(jiǎn)單快捷,精度滿(mǎn)足要求;⑥施工周期短(單根直徑1.6m,長(zhǎng)80m左右的鋼管樁沉樁施工全過(guò)程僅為2.5h)。這在在建的杭州灣大橋工程中得到了實(shí)踐。
3.2 無(wú)導(dǎo)向船雙壁鋼圍堰下沉施工技術(shù)
       基礎(chǔ)施工中,傳統(tǒng)采用的鋼板樁圍堰鉆孔樁基礎(chǔ)和沉井沉至基層的基礎(chǔ),存在著影響工程進(jìn)度的2個(gè)薄弱環(huán)節(jié):①鋼板樁圍堰鉆孔樁基礎(chǔ)采用單層鋼板樁, 沉井沉至基層的基礎(chǔ)在沉井頂上安設(shè)的防水圍堰,一般強(qiáng)度較小,圍堰內(nèi)抽水工序的安排受到施工水位的限制;②沉井基礎(chǔ)嵌入巖層清除風(fēng)化巖的消基工作非常費(fèi)工費(fèi)時(shí),特別是在深水急流中工程進(jìn)度直接制約著整個(gè)基礎(chǔ)的安全渡洪。相比而言,雙壁鋼圍堰鉆孔樁基礎(chǔ)采用雙壁鋼圍堰防水結(jié)構(gòu),該結(jié)構(gòu)吸收了上述2種施工結(jié)構(gòu)的優(yōu)點(diǎn),實(shí)質(zhì)上就是一個(gè)圓形浮式井筒和防水圍堰結(jié)合起來(lái)的施工結(jié)構(gòu),能夠承受較大的向內(nèi)或向外的水壓力,一般情況下,基礎(chǔ)施工工序的安排不受外界季節(jié)性水位變化的影響。
      雙壁鋼圍堰由內(nèi)外兩板壁組成,板壁間以剛性支撐予以連接,由于兩板壁之間為空腔,底部以環(huán)形刃腳封閉,使其具有自浮能力,在底節(jié)處于浮起的情況下可以根據(jù)設(shè)備起重能力逐節(jié)加高板壁,在空腔內(nèi)注水配重并通過(guò)吸泥機(jī)吸泥促使其下沉,直至將鋼圍堰下沉至設(shè)計(jì)指定位置,并通過(guò)灌注水下封底混凝土使其保持穩(wěn)定,而后根據(jù)設(shè)計(jì)要求進(jìn)行鉆孔樁施工,鉆孔平臺(tái)可直接搭設(shè)在鋼圍堰頂面。
      采用無(wú)導(dǎo)向船雙壁鋼圍堰下沉施工,由于取消了龐大的導(dǎo)向船、聯(lián)結(jié)梁體系等,錨碇系統(tǒng)所承受的風(fēng)力和水流作用力大大減少,從而簡(jiǎn)化了錨碇設(shè)備的配置與施工,加快了施工進(jìn)度,節(jié)省了鋼料和水上設(shè)備。同時(shí)雙壁鋼圍堰結(jié)構(gòu)為浮式沉井,既便于浮運(yùn)就位又能夠承受較大的水壓力,還可以克服下沉?xí)r底部翻砂的弊病,而且圍堰吸泥下沉就位時(shí)間短,施工安全。特別適用于通航條件要求高,施工區(qū)域狹窄,砂粘土及卵石土地層,無(wú)法設(shè)置導(dǎo)向船的水上施工項(xiàng)目。
      該工藝應(yīng)用于四川隆納鐵路瀘州長(zhǎng)江大橋水中基礎(chǔ)施工,順利完成了深水基礎(chǔ)施工任務(wù),確保大橋按期完工。對(duì)于類(lèi)似的深水基礎(chǔ)施工,有廣泛的推廣應(yīng)用價(jià)值。
4 結(jié)語(yǔ)
      我國(guó)土地遼闊、幅員廣大,自然地理環(huán)境不同,土質(zhì)各異,地下工程的區(qū)域性強(qiáng),這使得地下工程施工具有較大的差異性和復(fù)雜性。結(jié)合不同的工程特點(diǎn)不斷進(jìn)行創(chuàng)新是地下工程施工技術(shù)得以提高的根本。本文通過(guò)介紹近年來(lái)我國(guó)完成的幾種新型地下工程施工工藝,期望能給予地下工程施工一些啟發(fā),在此基礎(chǔ)上一方面積極推廣應(yīng)用這些新工藝,更重要的是在應(yīng)用的基礎(chǔ)上不斷創(chuàng)新,使我國(guó)的地下工程施工不斷邁上新臺(tái)階。

相關(guān)文章

專(zhuān)  題
 
 
 
封面人物
市場(chǎng)周刊
2024-04
出刊日期:2024-04
出刊周期:每月
總481期
出刊日期:(2014 07 08)
出刊周期:每周